LATITUDE 30° 10' 00” N, LONGITUDE 110° 32' 00” W

State of Sonora, MEXICO

Prepared for:
Yale Resources Ltd.
Suite 400 – 409 Granville Street
VANCOUVER, British Columbia
V6C 1T2

By:
David J. Pawliuk, P. Geo.
Nanoose Geoservices

March 25, 2009
TABLE OF CONTENTS

1.0 SUMMARY .. 1
2.0 INTRODUCTION AND TERMS OF REFERENCE 4
3.0 PROPERTY DESCRIPTION AND LOCATION 5
4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ... 5
5.0 HISTORY ... 8
6.0 GEOLOGICAL SETTING 10
7.0 DEPOSIT TYPE AND EXPLORATION MODEL 10
8.0 MINERALIZATION .. 15
9.0 EXPLORATION ... 20
10.0 SAMPLING METHOD AND APPROACH 21
11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 21
12.0 DATA VERIFICATION .. 21
13.0 ADJACENT PROPERTIES 21
14.0 MINERAL PROCESSING AND METALLURGICAL TESTING 22
15.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES 22
16.0 OTHER RELEVANT DATA AND INFORMATION 22
17.0 INTERPRETATION AND CONCLUSIONS 22
18.0 RECOMMENDATIONS 23
19.0 REFERENCES ... 26
20.0 DATE AND SIGNATURE 27
21.0 CERTIFICATE OF AUTHOR 28

APPENDICES

A Legal title opinion on Dos Naciones mineral concession, Sonora, Mexico
B Analytical certificate
C Geochemical rock sample descriptions
TABLES

1 Legend for Figure 3, Dos Naciones regional geology map 11

LIST OF FIGURES

1 Location Map, Historic Mining Areas Northern Sonora 6
2 Claim Map 7
3 Regional Geology Map 12
4 Dos Naciones Property Geology Map 13
4a Mina Dos Naciones Area Geology, Sampling Map 14
4b Mina Josefina Area Geology, Sampling Map 14
5 Schematic evolution of a calcic skarn deposit 18
6 Schematic cross section porphyry copper system 19
1.0 SUMMARY

This summary report describes the Dos Naciones Project property of Candev Resource Exploration Inc. (Candev), north-central Sonora State, Mexico. The writer has read National Instrument 43-101 and Form 43-101, and this report has been prepared in compliance with that instrument and form. The writer fulfills the requirement to be a "qualified person" for the purposes of NI 43-101.

The Dos Naciones property is located approximately 140 km north northeast of the city of Hermosillo, in north-central Sonora, Mexico and is approximately 75 km southwest of the important Cananea mining district. The Dos Naciones property is comprised of one mineral concession that covers approximately 2,391 hectares.

The Dos Naciones Project property is accessible via gravel roads that provide good access to all parts of the property. About 3 hours is required to drive from Hermosillo to the property. The climate within the property area is semi-arid, typical of higher elevations in the Sonoran desert; seasonal rains occur between April and July.

Northern Sonora is one of the most important mining areas in Mexico. A variety of different types of mineral deposits have been mined within the region, including porphyry copper deposits at Cananea and Nacozari, Carlin-type gold deposits at Santa Gertrudis and Amelia, and gold-silver veins at Klondike and Las Chispas (Heylmun, 1996). Silver-and lead-bearing quartz veins have been mined in at least two places on the Dos Naciones property, at Josefina and at the Dos Naciones occurrence area. Historic workings on the Dos Naciones property include pits and short adits excavated to extract copper from skarns.

The Dos Naciones Project property area is within the Cananea district of northern Sonora. A wide variety of sedimentary, igneous and metamorphic rocks of various ages occur in the region; the geologic history of this region is relatively complex.

Extensive sedimentary and volcanic rocks of Jurassic age occur within the property area. These include rhyolite and sandstone of possible Early Jurassic age and younger sandstone, siltstone, argillite and minor limestone of Late Jurassic age; andesite flows are locally interstratified with the Late Jurassic sedimentary rocks. Late Jurassic sandstone hosts most of the gold and silver occurrences northeast of Cucurpe (Figure 3). The stratified rock units are intruded by granodiorite of Late Cretaceous and Early Tertiary age; this intrusive rock unit is known as the Laramide Batholith. Skarns within the property area have likely formed as a result of infiltration metasomatism involving magmatic hydrothermal fluids from the nearby granodiorite stock.

The economic mineralization encountered to date on the Dos Naciones Project property is quartz veins containing lead, silver and minor gold. In addition, skarn or calc-silicate rocks at Dos Naciones locally contain gold, silver and copper. Thus, there have been at least two episodes of gold and silver mineralization at the Dos Naciones property. The geological setting of the Dos Naciones property is favourable for economic porphyry copper deposits.

The results of geochemical rock sampling show that economic concentrations of silver and gold occur in quartz veins from two separate areas within the Dos Naciones property. Limited historic production has occurred from these veins. The results of
geochemical rock sampling also show that copper-iron skarns within the Dos Naciones property also contain gold and silver. Skarns have also been mined within the property area.

The results of the writer’s geochemical rock sampling confirmed the results of historic sampling on the property.

The Dos Naciones property hosts different styles of significant metallic mineralization.

Economic concentrations of silver and lead occur in quartz veins at both the Josefina and the Dos Naciones occurrence areas within the property. Economic concentrations of copper occur in skarn within the property area. Skarn in the property also contains silver and gold. There have been at least two episodes of gold and silver mineralization at the Dos Naciones property.

The geological setting of the Dos Naciones property area is favourable for bulk-tonnage porphyry copper deposits, and for skarn-hosted deposits. Porphyry copper deposits have been mined in the region at Nacozari and at Cananea (Bushnell, 1988). In addition to the porphyry-style mineralization, skarn-style copper deposits have also been mined at Cananea (Meinert, 1982).

The aeromagnetic low within the central part of the Dos Naciones property may indicate the presence of silica- or clay-altered rocks, both of which are often associated with porphyry copper style mineralization. In the writer’s opinion, the geological setting of the Dos Naciones property is favourable for the occurrence of porphyry copper deposits.

Recommendations and budget

A staged exploration program is recommended. Phase One of the proposed exploration program would consist of detailed geological mapping, hand trenching and prospecting. This work would be directed towards better-delineating the mineralized veins at Josefina, and at the Dos Naciones occurrence area. The sedimentary and volcanic rocks within the property should be mapped in an attempt to determine whether or not there is a stratigraphic control to skarn formation; perhaps skarns form where faults intersect particular, mappable stratigraphic units.

The existing results of geochemical skarn sampling should be reviewed to determine if a property-scale metal zoning pattern is present within the skarns at Dos Naciones.

The area of the aeromagnetic low should be geologically mapped. The objective of the mapping will be to look for late igneous dykes which often occur in wallrocks nearby igneous intrusions. In addition, any clay-altered or silica-altered rock within the area should be mapped, and the intensity of the alteration should be noted because both clay-altered and silica-altered rocks occur around the periphery of porphyry copper deposits that are associated with intrusive rock units. Porphyry copper mineralization can occur within these alteration envelopes.

The Phase One program is estimated to cost $53,500 U.S.

If areas of igneous dykes or clay-altered or silica-altered rock are mapped within the area of the aeromagnetic low, then induced polarization (IP) surveying should be done to
test for the presence of sulphide mineralization associated with the altered rocks. The IP
surveying would be part of Phase Two exploration work on the Dos Naciones property.

A Phase Two program of diamond drilling of 500 m is recommended to test the
mineralized vein structures at Josefina. Additional diamond drilling may be required to
test mineralized quartz vein structures in the Dos Naciones occurrence area.

The Phase Two program is estimated to cost $174,000 U.S.

If the Phase Two IP surveying indicates the presence of chargeability anomalies, then
two or three diamond drill holes should be drilled to test for sulphide mineralization.
Sulphide minerals occurring as disseminated and as veinlets can produce chargeability
anomalies. Porphyry copper deposits are characterized by both disseminated and
veinlet sulphides. The Phase Three program is estimated to cost $180,000.

The total cost of the Phase One, Phase Two and Phase Three programs, including a
contingency, is estimated to be $450,000 U.S.
2.0 INTRODUCTION AND TERMS OF REFERENCE

This summary report describes the Dos Naciones Project property of Yale Resources Ltd., north-central Sonora State, Mexico. This technical report is written at the request of Mr. Ian Foreman, President of Yale Resources Ltd. (Yale), and is intended for public disclosure.

This technical report summarizes and describes historical work conducted on the Dos Naciones Project property to date, and makes recommendations for future work on the property.

This report is based on private unpublished reports, upon information provided by Candev and upon published governmental maps and geological reports pertaining to the Dos Naciones Project property region. The authors of those records were not necessarily "Qualified Persons" within the context of National Instrument 43-101. The writer has attempted to accurately portray the content of those records in this technical report.

The writer David Pawliuk has previous experience in the Dos Naciones region, having visited a mineral property about 38 km north of the Dos Naciones property during 2004 (Pawliuk, 2004). The writer personally visited the Dos Naciones Project property on March 9, 2009, to examine the geology of the property and to collect geochemical rock samples from the property area.

The writer has read National Instrument 43-101 and Form 43-101F, and this report has been prepared in compliance with that instrument and form. The writer fulfills the requirements to be a "Qualified Person" for the purposes of NI 43-101.

The writer checked the historic geological mapping of the main mineralized areas during traverses of the property area; the historic geological mapping was found to be accurate.

No legal search of mineral tenure (ownership) was made by the writer during the preparation of this report. However, the writer examined copies of the mineral concession title document, as well as the legal title opinion document. These papers indicate that the concession is registered in the name of Minera Alta Vista, S.A. de C.V., and also indicate that the title to the concession is valid. The information pertaining to the property ownership and the legal title opinion was obtained from Yale. The writer disclaims responsibility for this information.
3.0 PROPERTY DESCRIPTION AND LOCATION

The Dos Naciones Project property is located approximately 140 km north-northeast of the city of Hermosillo, in north-central Sonora, Mexico (Figure 1). The Dos Naciones mining property is located approximately 75 km southwest of the important Cananea mining district (Figure 1). The Cananea district produced more than 2.27 billion kg of copper, in addition to lead, zinc and molybdenum, between 1900 and 1982 (Meinert, 1982). The Dos Naciones property is comprised of one mineral concession, or lote, that covers approximately 2,391 hectares (Figure 2). The Dos Naciones mineral concession measures approximately 5 km east-west by 5 km north-south; it surrounds the “CRUZ” concession, which covers an area of 100 hectares.

The writer has examined a legal title opinion document pertaining to the Dos Naciones property. The title opinion document was prepared by Alfonso Gonzalez Uribe, Partner, Cornejo, Mendez, Gonzalez Duarte, S.C., a Mexican law firm. A copy of the legal title opinion document forms Appendix A. The mineral concession that forms the Dos Naciones property was staked by Minera Alta Vista, S.A. de C.V. (Minera Alta Vista), a Mexican company that is a subsidiary of Yale Resources Ltd. Mineral concession Dos Naciones, number 230649, was registered September 28, 2007 and expires September 27, 2057. The concession is registered by the Government of Mexico in Book 366 Page 155 Act 309. This exploration concession covers an area of 2930.8269 ha, and is currently registered in the name of Minera Alta Vista, S.A. de C.V. Fifty percent (50%) of the concession is held by Candev Resource Exploration Inc. and Minera Alta Vista holds the remaining 50% of the concession.

The Dos Naciones mineral concession lies within the municipalities of Opodepe and Cucurpe, Sonora. Payments of $12,146 pesos are paid every semester, i.e., twice per year, to the Government of Mexico in order to maintain the rights to the mineral concession.

The Dos Naciones mineral concession is illustrated in Figure 2.

4.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Dos Naciones Project property is located in north-central Sonora, Mexico approximately 60 km southeast of the town of Magdalena de Kino, or 140 km north-northeast of Hermosillo (Figure 1). The Dos Naciones Project property is accessible via a gravel road that leads to Rancho Los Janos; this gravel road leads southward from the paved road between Magdalena de Kino and the village of Los Janos. The turnoff southwards to Rancho Los Janos is about 10 km east of the village of Cucurpe. Four-wheel-drive roads extend southwards beyond the ranch buildings and provide good access to all parts of the property (Figure 4). About 3 hours is required to drive from Hermosillo to the Dos Naciones property.

There is a turf airstrip about 850 m long within the northeast corner of the concession area (Figure 4). However, this airstrip has been de-activated by erecting fence posts at intervals along the length of the airstrip, in order to prevent it’s use.
There is an electrical powerline extending north from the village of Cucurpe to the Mina Santa Gertrudis, a former gold-producing mine located about 45 km north of the Dos Naciones property. Cucurpe is about 20 km northwest of the Dos Naciones property.

The climate within the property area is semi-arid, typical of higher elevations in the Sonoran desert. Seasonal rains occur between April and July. The local ranchers have constructed dams along creek drainages within the property area, to collect runoff water for their livestock.

Local accommodation is available on the property; the rancher has several rooms and a bunk house for hunters that visit the area in January of each year. These accommodations could be made available during the rest of the year. Additional accommodation can be found at a hotel on the eastern outskirts of Cucurpe. Limited supplies are also available at Cucurpe. Magdalena de Kino is the nearest community with fuel and full services. Magdalena de Kino is situated along the Pan-American Highway about 85 km south of the United States border at Nogales.

The Dos Naciones Project property area forms part of the Sierra El Jucaral, a north northwest trending mountain range on the western fringe of the Sierra Madre de Occidental. Elevations range between 1,140 and 1,690 m a.s.l. within the property area. The hillsides are moderately steep and thinly forested by scrub oak trees. There are local brushy areas along creek valleys, but most of the property area is open and grass-covered between the oak trees.

Rock outcrop is exposed over about 10 to 20 per cent of the Dos Naciones Project property area.

5.0 HISTORY

North-central Sonora has undergone intermittent exploration since the time of the copper discoveries at Nacozari in 1660 and at Cananea in 1760 (Heylmun, 1996). Northern Sonora is one of the most important mining areas in Mexico. A variety of different types of mineral deposits have been mined within the region, including porphyry copper deposits at Cananea and Nacozari, Carlin-type gold deposits at Santa Gertrudis and Amelia, and gold-silver veins at Klondike and Las Chispas (Heylmun, 1996; Figure 1).

Silver- and lead-bearing quartz veins have been mined in at least two places on the Dos Naciones property, at Josefina and at the Dos Naciones occurrence area.

Historic workings on the Dos Naciones property include pits and short adits excavated to extract copper from skarns.

5.1 Dos Naciones Occurrence Area

Silver- and lead-bearing quartz veins have been mined at the Dos Naciones occurrence area, in the southwest corner of the Dos Naciones property. The writer found a metal stamp used for crushing galena-bearing quartz vein material at this site during his property visit. From the appearance of the metal stamp and other metal debris at Dos Naciones occurrence area, the writer estimates that the most recent activity there was at least 40 years ago.
There is a 30 m deep shaft excavated within granitic intrusive rock at the Dos Naciones occurrence area; this shaft is labelled Shaft # 2 on Figure 4a, which shows the geology and sampling at the Dos Naciones occurrence area.

From the size of the mine dump piles, the writer estimates that at least 1,000 tonnes of vein material has been mined at Dos Naciones occurrence area.

There has been limited historic mining of the copper- and iron-bearing skarns at the Dos Naciones occurrence area. One skarn body in this area extends across 100 m by 20 m, and the other skarn body is 180 m long by 75 m wide.

5.2 Josefina Area

Silver- and lead-bearing quartz veins have been mined at the Josefina area at the central part of the Dos Naciones property. From the appearance of the mine dump at Josefina, the writer estimates that the most recent activity there was at least 10 years ago. From the appearance of the mine dumps at Josefina, the writer estimates that about 50 tonnes of vein material has been mined at Josefina.

There are at least three quartz veins within the Josefina area. These veins dip steeply to the northeast and extend for at least 250 m along strike (Figure 4b). These veins are from 0.5 m to 3.0 m wide; a shaft 2.5 m deep has been excavated within one of these quartz veins.

5.3 La Espanola

La Espanola area is on the eastern side of the Dos Naciones property (Figure 4). Here, the writer saw a reverse circulation drill site that appears to be several years old. Minera Alta Vista has determined that six drill holes have been completed in the La Espanola area (Vidales, 2008). Anecdotal evidence suggests that these holes were drilled during the 1990’s by Penoles, the largest mining company in Mexico. The results of this drilling are unknown to the writer. Minera Alta Vista is currently seeking additional information pertaining to these drill holes.

The most recent known exploration work on the Dos Naciones property was geological mapping and geochemical rock sampling by Minera Alta Vista, S.A. de C.V., a wholly owned subsidiary of Yale Resources Ltd. The geochemical rock sampling was mainly done in areas of historic workings within the property area (Vidales, 2008). Results of this work indicated that economic concentrations of silver and lead are present in quartz veins which occur at two places on the property.
6.0 GEOLOGICAL SETTING

The Dos Naciones Project property area is within the Cananea district of northern Sonora. The Cananea district was mapped by Teran Martinez et al. (1999) of the Servicio Geologico Mexicano at 1:250,000 scale; most of the description of the geological setting that follows is taken from their map with marginal notes. A wide variety of sedimentary, igneous and metamorphic rocks of various ages occur in the region; the geologic history of this region is relatively complex. The geology of the Dos Naciones property region is presented in Figure 3.

The oldest rock units within the property region are gneisses of Early Proterozoic age that belong to the Bamori Metamorphic Complex, which formed as a result of the Mazatazal Orogeny (Teran Martinez et al., 1999). These gneisses occur about 15 km to the south, and to the southeast, of the Dos Naciones property area (Figure 3). Granite of Proterozoic age is also exposed south of the property.

Areas of Cambrian age quartzite have been mapped within the Dos Naciones property.

The next youngest rocks are extensive sedimentary and volcanic rocks of Jurassic age. These include rhyolite and sandstone of possible Early Jurassic age and younger sandstone, siltstone, argillite and minor limestone of Late Jurassic age; andesite flows are locally interstratified with the Late Jurassic sedimentary rocks. Late Jurassic sandstone hosts most of the gold and silver occurrences northeast of Cucurpe (Figure 3). Slate and quartzite of possible Middle Jurassic age were mapped by Teran Martinez et al. (1999) in an area about 12 km north of Dos Naciones (Figure 3).

Limestone and shale of Cretaceous age overlie the Late Jurassic sedimentary rocks to the west of the Dos Naciones property (Figure 3).

The stratified rock units are intruded by a large body of granodiorite and granite of Late Cretaceous and Early Tertiary age known as the Laramide Batholith (Teran Martinez et al., 1999).

Cretaceous-aged limestone and shale are overlain by Tertiary rhyolite to the east of Dos Naciones (Figure 3).

Tertiary conglomerate covers much of the property region, especially the sides of the wide, northerly trending valleys (Figure 3).

Regional deformation has resulted in numerous faults crosscutting the Dos Naciones Property area (Figure 3). Most of these faults have likely been reactivated at different times. Regional-scale, northerly trending normal faults indicate that east-west crustal extension has occurred since the Tertiary Period.

7.0 DEPOSIT TYPES AND EXPLORATION MODEL

The economic mineralization encountered to date on the Dos Naciones Project property is quartz-galena veins and copper-iron skarns.

Skarn or calc-silicate rocks locally contain gold, silver, copper and iron within the property area, as at both the east and west sides of the Dos Naciones occurrence area.
TABLE 1 LEGEND FOR FIGURE 3, REGIONAL GEOLOGY MAP

<table>
<thead>
<tr>
<th>Legend</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td></td>
</tr>
<tr>
<td>Cal</td>
<td>Alluvium</td>
</tr>
<tr>
<td>Qc</td>
<td>Conglomerate</td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
</tr>
<tr>
<td>Tc</td>
<td>Conglomerate</td>
</tr>
<tr>
<td>Tr</td>
<td>Rhyolite</td>
</tr>
<tr>
<td>Ta.l</td>
<td>Andesite, ignimbrite</td>
</tr>
<tr>
<td>Late Cretaceous to Early Tertiary</td>
<td></td>
</tr>
<tr>
<td>KTdr</td>
<td>Granite, granodiorite</td>
</tr>
<tr>
<td>Cretaceous</td>
<td></td>
</tr>
<tr>
<td>Ka.s</td>
<td>Andesite, sandstone</td>
</tr>
<tr>
<td>Klhl</td>
<td>Limestone, Shale</td>
</tr>
<tr>
<td>Jurassic</td>
<td></td>
</tr>
<tr>
<td>Js</td>
<td>Sandstone, siltstone, argillite; minor limestone and andesite flows</td>
</tr>
<tr>
<td>Jst.q</td>
<td>Middle Jurassic (?)</td>
</tr>
<tr>
<td>Jst.q</td>
<td>Slate, quartzite</td>
</tr>
<tr>
<td>Early Jurassic</td>
<td></td>
</tr>
<tr>
<td>Jr</td>
<td>Rhyolite, Sandstone</td>
</tr>
<tr>
<td>Cambrian</td>
<td></td>
</tr>
<tr>
<td>Cq</td>
<td>Quartzite</td>
</tr>
<tr>
<td>Proterozoic</td>
<td></td>
</tr>
<tr>
<td>Pgr</td>
<td>Granite</td>
</tr>
<tr>
<td>Plnl</td>
<td>Gneiss</td>
</tr>
</tbody>
</table>

SYMBOLS

- ![Symbol](image) Mineral Occurrence, metals present
- ![Symbol](image) Normal Fault; teeth on hangingwall (down dropped) side of fault trace.
- ![Symbol](image) Geological Contact
Note: geology from T. G. Vidal Soto (2008)
DOS NACIONES OCCURRENCE

JOSEFINA AREA

Note: geology modified after Vidales (2008)

Candev Resource Exploration Inc.

DOS NACIONES PROPERTY
GEOLOGY, SAMPLING
DOS NACIONES AND JOSEFINA

NANOOSE GEOSERVICES

SCALE: AS SHOWN DATE: MARCH-2009 FIG: 4a, 4b
(Figure 4a). The skarns here likely formed as a result of infiltration metasomatism involving magmatic hydrothermal fluids from the nearby granodiorite stock. Most major skarn deposits have formed in a similar manner (Ray and Webster, 1991a; Meinert, 1993). The skarns at the Dos Naciones occurrence area are the result of alteration of the wallrock sediments, and so are classified as exoskarns. The skarn formation here is likely controlled by the faults which extend through these skarns; the faults acted as a conduit for the magmatic hydrothermal fluids that formed the skarn.

Figure 5 depicts an example of fault-controlled mineralization within skarn. Faults and fractures can localize gold and silver mineralization within skarns (Ray, 1995). The fault at the western Dos Naciones occurrence area has been reactivated since the skarn formation, and a discontinuous quartz vein has been emplaced along this fault. Smaller, late quartz veins up to 25 cm wide crosscut skarn at this area; these quartz veins are not emplaced along faults.

Another fault-controlled, magnetite-bearing exoskarn is present at eastern Dos Naciones occurrence area (Figure 4a). The best sulphide mineralization here occurs adjacent to the fault, which has been re-activated after the skarn formed, similar to the fault on the west side of the Dos Naciones occurrence area. This fault dips at about 55 degrees to the northeast.

Figure 6 is a schematic cross section of a porphyry copper mineralizing system. The figure shows that copper-bearing skarns, lead-silver quartz veins and stockwork/breccia porphyry copper-gold mineralization can all occur within various parts of a regional scale porphyry copper system. Copper-bearing skarns and lead-silver veins occur within the Dos Naciones property; these types of mineralization often occur around the periphery of porphyry copper systems (Thompson, 1995). In the writer’s opinion, there is good potential for an economic porphyry copper deposit to occur within the Dos Naciones property area.

A regional scale aeromagnetic low feature occurs within the Dos Naciones property area (Figure 3; (Servicio Geologico Mexicano, 1998). The aeromagnetic map shows an ovoid magnetic low within the south-central part of the property area. Because skarns within the property area contain magnetite, skarns will be indicated by magnetic highs. A magnetic low can indicate an area where the rocks have been affected by either silica or clay mineral alteration. These kinds of wallrock alteration are typical of porphyry copper deposits (e.g., Drummond and Godwin, 1976).

8.0 MINERALIZATION

The economic mineralization encountered to date on the Dos Naciones Project property is quartz veins containing galena, silver and minor gold. In addition, skarn or calc-silicate rocks at Dos Naciones locally contain gold, silver and copper. Thus, there have been at least two episodes of gold and silver mineralization at the Dos Naciones property.

The geological setting of the Dos Naciones property is favourable for economic porphyry copper deposits.

8.1 Dos Naciones Occurrence Area
Silver- and lead-bearing quartz veins have been mined at the Dos Naciones occurrence area, in the southwest corner of the Dos Naciones property.

There is a 30 m deep shaft excavated within granitic intrusive rock at the Dos Naciones occurrence area; this shaft is labelled Shaft # 2 on Figure 4a, which shows the geology and sampling at the Dos Naciones occurrence area. No vein is exposed in the sides of the shaft opening, and the writer did not attempt to enter the shaft. The size and attitude of the mineralized vein in these underground workings is unknown. However, the vein is at least 30 cm wide, because vein quartz pieces up to 30 cm in diameter were found in the dump pile. The mineralized vein may possibly occur along the contact between the argillite wallrock and the intrusive granodiorite. A short quartz vein crosscutting argillite is exposed downslope of the old workings, near the contact with the intrusive granodiorite; this vein dips to the southwest (Figure 4a). The old mine workings at the Dos Naciones occurrence area are spaced over a distance of about 250 m on surface, indicating that the mineralized silver-lead quartz vein here extends at least 250 m along strike.

From the size of the mine dump piles, the writer estimates that at least 1,000 tonnes of vein material has been mined at Dos Naciones occurrence area. A select sample, number E51556, of the better-mineralized vein material from this dump collected by the writer contains 221 parts per million (ppm) or 221 g/t silver, 4.44% lead and 0.636% zinc (Figure 4a; Appendices B and C). Historic sample 464311 of select material from the same dump contained 88 g/t silver, 1.75% lead and 1% zinc (Vidales, 2008).

The writer collected rock sample E51557 at the skarn outcrop area on the west side of the Dos Naciones occurrence. This sample is a continuous chip sample across 0.75 m, collected from the same general area as historic sample 464307, within the central part of the skarn outcrop area (Figure 4a). The writer found no markings to indicate the locations of the historic sample sites within this skarn outcrop area, so the results of these two samples cannot be directly compared. Instead, the results of sample E51557 give an indication of the tenor of mineralization within a typical portion of the skarn. Sample E51557 contains abundant iron oxide, and about 1% combined disseminated malachite and azurite. This sample contains 9,850 ppm (0.985%) copper, 42.7 g/t silver, 0.315 g/t gold, 577 ppm lead and 607 ppm zinc (Appendices B and C). Historic sample 464307 contained 3.32% copper, 126 g/t silver, 0.185 g/t gold, less than 2 ppm lead and 370 ppm zinc across 2.0 m (Vidales, 2008). The skarn here is crosscut by a fault striking 140 degrees and dipping 46 to 50 degrees to the southwest. This fault probably acted as a conduit for the hydrothermal fluids that formed the skarn; most of the skarn occurs in the fault hangingwall. The fault was later reactivated. A discontinuous quartz vein up to 25 cm wide occurs along this fault. The fault and associated quartz vein are approximately parallel the quartz vein exposed to the east, which crosscuts argillite near the granodiorite / argillite contact downslope to the south of sample site E51556 (Figure 4a). The skarn outcrop area at the western side of the Dos Naciones occurrence area extends across about 100 m by 20 m.

The writer collected rock sample E51558 at the skarn outcrop area on the east side of the Dos Naciones occurrence area (Figure 4a). This sample is medium brown, fine grained, moderately fractured skarn crosscut by irregular magnetite veinlets up to 7 cm wide that form 3 to 4% of the rock volume; the skarn contains limonite and malachite (Appendix C). The rock is intensely weathered; no sulphide minerals were seen. Sample E51558 is a continuous chip sample across 1.7 m between marks showing the
limits of historic sample 464324. Sample E51558 was collected to check the results of historic sample 464324; sample 464324 is noted as having a width of 1.8 m. Sample E51558 contains 7.3 g/t silver, 0.287 g/t gold, 0.785% copper, 102 ppm lead and 317 ppm zinc across 1.7 m (Appendices B and C). Historic sample 464324 contained 9.5 g/t silver, 0.150 g/t gold, 1.22% copper, less than 2 ppm lead and 322 ppm zinc across 1.8 m (Vidales, 2008). The eastern skarn at Dos Naciones occurrence area extends across about 180 m by 75 m.

8.2 Josefina Area

Silver- and lead-bearing quartz veins have been mined at the Josefina area in the central part of the Dos Naciones property.

There are at least three quartz veins within the Josefina area. These veins dip steeply to the northeast, extend for at least 250 m along strike, and are open along strike and at depth (Figure 4b). A short shaft has been excavated within one of these quartz veins.

The writer collected rock sample E51559 from a mineralized quartz vein at Josefina, as a check on the results for historic sample 464345. The quartz vein here is milky white with traces of light brown limonite along weathered fracture surfaces; no sulphide minerals were seen. The vein dips at about 60 degrees to the east. This vein is almost certainly emplaced along a fault; there is a 6 or 8 cm wide band within the central part of the vein that is finely banded on a mm scale. The vein quartz is sugary and sandy within this band, indicating movement after the vein was emplaced. The quartz vein formed during at a series of pulses; there are at least seven distinct bands within the vein; each of these bands is marked by subhedral quartz crystals lining open spaces within the vein. The bands are up to 4 cm wide. Open cavities within the vein locally are up to 10 by 25 by 8 cm across.

Sample E51559 contains 22.3 g/t silver, 0.044 g/t gold, 0.354% lead and 137 ppm zinc across 1.8 m. Historic sample 464345 from the same site contained 39 g/t silver, less than 0.005 g/t gold, 0.40% lead and 69 ppm zinc.

8.3 La Espanola

La Espanola area is on the east side of the Dos Naciones property (Figure 4). Here, the writer saw a reverse circulation drillsite that appears to be several years old. Minera Alta Vista has determined that six drillholes were completed in the La Espanola area during the 1990's. Anecdotal evidence suggests that these holes were drilled by Penoles, the largest mining company in Mexico. The results of this drilling are unknown to the writer. Minera Alta Vista is currently seeking additional information pertaining to these drill holes.
Schematic evolution of a calcic skarn deposit:

A Intrusion of magma into carbonate-rich sequence and formation of contact hornfels (hornfels not shown in B, C or D)
B Infiltration of hydrothermal fluids to produce endoskarn and pyroxene-rich exoskarn.
C Continued infiltration with progressive expansion of exoskarn envelope and development of proximal garnet-rich exoskarn. Skarn controlled partly by lithologies (e.g., limestone beds locally replaced by garnetite), bedding planes and fractures. Some mineralization may take place late in this stage.
D Hydrothermal system wanes and cools accompanied by retrograde overprinting. During this stage metals may be introduced or scavenged and redeposited to form economic orebodies. The structural/lithological controls and influence of meteoric water results in irregularly distributed ore bodies that are notoriously difficult to delineate in skarn.

Note: This figure taken from Ray and Webster (1991)
Schematic cross section through a multi-phase magmatic-hydrothermal porphyry copper system showing different styles of metallic mineralization and alteration distributed both laterally and vertically around the intrusive core. No one system contains all of the styles shown in this diagram. Modified from Sillitoe (1990) and Thompson (1995).
9.0 EXPLORATION

The most recent exploration work on the Dos Naciones property was geological mapping and geochemical rock sampling by Minera Alta Vista (Yale Resources Ltd.). The results of their work are detailed below.

Dos Naciones occurrence area

Yale Resources Ltd. collected seven chip samples across the eastern skarn at Dos Naciones occurrence area during 2008. These chip samples range from 1.70 m to 2.50 m wide. These seven samples contain from 0.51% to 1.51% copper, from 2.3 g/t to 29.9 g/t silver, and from 0.04 g/t to 0.43 g/t gold (Yale Resources Ltd. news release dated October 29, 2008).

Yale Resources Ltd. also collected seven chip samples across the western skarn at Dos Naciones occurrence area. These chip samples range from 2.00 m to 3.30 m wide. These seven samples contained from 0.48% to 3.32% copper, from 0.8 g/t to 126.0 g/t silver, and from 0.01 g/t to 0.22 g/t gold (Yale Resources Ltd. news release dated October 29, 2008).

Silver- and lead-bearing quartz veins have been mined at the Dos Naciones occurrence area. Select samples of better-mineralized material from the mine dumps contained 256.0 g/t silver with 4.45% lead, and 182.0 g/t silver with 3.29% lead and 0.61 g/t gold (Yale Resources Ltd. news release dated February 10, 2009). The old workings are now collapsed, but an examination of the workings on surface indicates that the vein(s) were mined on two different levels.

Josefina Area

Silver- and lead-bearing quartz veins have also been mined at the Josefina area, in the central part of the property. A select sample of better-mineralized material from the mine dump contained 591.0 g/t silver with 12.6% lead (Yale Resources Ltd. news release dated February 10, 2009).

La Espanola Area

Two skarn areas are known within the La Espanola area in the east-central part of the Dos Naciones property (Figure 4). Two chip samples from the southern skarn assayed 0.98% and 1.90% copper, 0.10 g/t and 0.15 g/t gold, and 17.3 g/t and 38.6 g/t silver; both samples were collected across 2.0 m (Yale Resources Ltd. news release dated October 29, 2008). The southern skarn extends across an area of about 260 m by 125 m.

Yale Resources Ltd. collected four chip samples from the northern skarn area at La Espanola. These chip samples range from 1.0 m to 2.0 m wide. These four chip samples contained from 0.78% to 1.19% copper, from 0.21 g/t to 0.35 g/t gold, and from 10.5 g/t to 26.8 g/t silver (Yale Resources Ltd. news release dated October 29, 2008). The northern skarn extends across an area of about 100 m by 50 m.

Minera Alta Vista has paid semi-annual taxes to the Government of Mexico to maintain the mineral concession.
10.0 SAMPLE METHOD AND APPROACH

The writer collected four geochemical rock samples from the Dos Naciones Project property area on March 9, 2009. Three of these samples were collected from Dos Naciones occurrence area, and one from the Josefina area (Figures 4a and 4b).

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The rock samples were bagged, and the bags were sealed by the writer. The samples were then transported via truck from Dos Naciones property to Minera Alta Vista’s offices at Hermosillo, Sonora. The samples were delivered to ALS Chemex Laboratories in Hermosillo on March 10, 2009 by the writer. The writer maintained custody of the samples from the time the samples were collected until the samples were delivered to ALS Chemex Laboratories facility at Hermosillo.

The rocks were analyzed for gold by geochemical fire assay, solvent extraction and atomic adsorption spectrometry. A subsample of 30 gm was assayed. The rock sample was also analyzed for silver, mercury, arsenic, antimony and 46 other elements by aqua regia acid digestion ICPMS.

A certificate of analysis forms Appendix B. The rock sample descriptions are presented in Appendix C.

12.0 DATA VERIFICATION

The results of geochemical rock sampling show that economic concentrations of silver and gold occur in quartz veins from two separate areas within the Dos Naciones property. Limited historic production has occurred from these veins.

The results of geochemical rock sampling also show that copper-iron skarns within the Dos Naciones property also contain gold and silver. Skarns have also been mined within the property area.

As outlined above in the section on mineralization, the results of the writer’s geochemical rock sampling confirmed the results of historic sampling on the property by Yale Resources Ltd. during 2008.

13.0 ADJACENT PROPERTIES

The west central side of the Dos Naciones mineral concession is adjoined by the “La Pitayita” mineral concession (Figure 2). In addition, the Dos Naciones mineral concession completely surrounds the “Cruz” mineral concession, which covers an area of 1.0 km2 within the western part of the Dos Naciones mineral concession (Figure 2).

Mineral concession “Grande” covers the ground to the north and west of the Dos Naciones mineral concession (Figure 2).

Yamana Gold Inc. (Yamana) is proceeding with advanced development on their Mercedes/Klondike project located about 22 km northeast of the centre of the Dos
Naciones mineral concession; Klondike is plotted on Figure 3. Yamana has delineated proven and probable reserves of 2.6 million tonnes grading 7.1 g/t gold and 72 g/t silver within epithermal veins. Yamana has obtained a positive result from a pre-feasibility study of the Mercedes project, and is planning for a six-year mine life, using a mining rate of 1,500 tonnes per day (www.yamana.com/Operations/OtherProjects/Mercedes).

14.0 MINERAL PROCESSING AND METALLURGICAL TESTING

No mineral processing nor metallurgical testing were performed during the preparation of this report.

15.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

The Dos Naciones mineral concession is an early-stage exploration property. No mineral resource estimates can be made at this time.

16.0 OTHER RELEVANT DATA

It is the writer’s opinion that there is no additional information or explanation necessary to make this technical report understandable and not misleading.

17.0 INTERPRETATION AND CONCLUSIONS

The Dos Naciones property hosts different styles of significant metallic mineralization.

Economic concentrations of silver and lead occur in quartz veins at both the Josefina and the Dos Naciones occurrence areas within the property. The main mineralized vein structures extend for at least 250 m along strike at Josefina; these veins are likely emplaced along northwesterly trending, northeast dipping fault structures. The mineralized veins at Josefina are open at both ends. The attitude of the mineralized vein structure(s) at the Dos Naciones occurrence area is unknown, but these veins may dip to the southwest. Old workings are found over a distance of about 250 m at the Dos Naciones occurrence area, indicating that the mineralized vein(s) here probably have a strike length of at least 250 m.

Extensive areas of skarn occur within the Dos Naciones property at the La Espanola area, and at the Dos Naciones occurrence area. These skarns contain economic concentrations of copper, silver and gold. Skarns often form around the periphery of porphyry copper mineralization systems (e.g., Figure 6).

Quartz veins locally occur along faults that crosscut skarns, as in the Dos Naciones occurrence area. A lead- and silver-bearing quartz vein occurs along a fault that strikes 130 degrees and dips 55 degrees to the northeast at the east side of the Dos Naciones occurrence area; this vein is approximately parallel the mineralized quartz veins at Josefina.

There have been at least two episodes of metallic mineralization at the Dos Naciones property: within the skarns and within the mineralized quartz veins.
The geological setting of the Dos Naciones property area is favourable for bulk-tonnage porphyry copper deposits. Porphyry copper deposits have been mined in the region at Nacoziari and at Cananea (Bushnell, 1988).

In addition to the porphyry-style mineralization, skarn-style copper deposits have also been mined at Cananea (Meinert, 1982). In the writer’s opinion, the Dos Naciones property has the potential to host economic skarn-style copper-silver mineralization, as well as economic porphyry copper deposits. Mineralized skarns occur at the widely separated Dos Naciones occurrence area, and at the La Espanola area, within the property. Both of these skarn areas likely formed as a result of metasomatic alteration by hydrothermal fluids from the central granodiorite intrusion within the Dos Naciones property. These skarns extend for areas up to 260 m by 125 m across on surface, and are open at depth; the skarns may join at depth in both the La Espanola area, and at the Dos Naciones occurrence area.

The aeromagnetic low within the central part of the Dos Naciones property may indicate the presence of silica- or clay-altered rocks, both of which are often associated with porphyry copper style mineralization. In the writer’s opinion, the geological setting of the Dos Naciones property is favourable for the occurrence of porphyry copper deposits.

18.0 RECOMMENDATIONS

A staged program of recommended exploration for the Dos Naciones project property is outlined below.

Further geological mapping and geochemical rock sampling should be done at the Dos Naciones property as a Phase One program. This work should be done with the objective of developing diamond drill targets.

Hand trenching, stripping, sampling and detailed geological mapping should be done along the mineralized quartz veins at the Josefina area. Hand pits should be excavated at intervals of about 25 metres along the surface projection of the veins. The better-mineralized portions of the quartz veins will contain more galena, and so will likely be more recessive weathering than the less well mineralized parts of the veins.

Once the better-mineralized sections of the veins at Josefina have been mapped and sampled, a series of diamond drill holes can be planned to test the veins at depth.

The area around the quartz vein exposed at central Dos Naciones occurrence area should be stripped of overburden. Detailed geological mapping of the vein should be done to attempt to determine the geological controls on vein emplacement. Hand trenching and stripping should also be done in a few places across the contact between the intrusive granodiorite and the wallrock argillite. The mineralized quartz-galena veins in this area were likely emplaced along or near the intrusive contact, but the mineralized veins are not exposed on surface. A detailed examination of the intrusive contact may provide information regarding the setting and the attitude of the mineralized veins.

The sedimentary and volcanic rocks within the property should be mapped in an attempt to determine whether or not there is a stratigraphic control to skarn formation. The writer observed faults crosscutting the larger skarns within the property area; perhaps skarns form where faults intersect particular, mappable stratigraphic units.
The existing results of geochemical skarn sampling should be reviewed, with the objective being to determine if some skarns are more favourable, i.e., contain more precious metals, than other skarns. Elevated concentrations of bismuth, arsenic, cobalt and tellurium are often associated with precious metal-bearing skarns (Ray and Webster, 1991). There may be a property-scale metal zoning pattern present within the skarns at Dos Naciones.

The area of the aeromagnetic low as shown on Figure 3 should be geologically mapped. This aeromagnetic low indicates the possible presence of an underlying intrusive rock unit. The objective of the mapping will be to look for late igneous dykes which often occur in wallrocks nearby igneous intrusions. In addition, any clay-altered or silica-altered rock within the area should be mapped, and the intensity of the alteration should be noted. Both clay-altered and silica-altered rocks occur around the periphery of porphyry copper deposits that are associated with intrusive rock units. The intensity of alteration usually increases towards the intrusive contact, and porphyry copper mineralization can occur within these alteration envelopes.

A Phase Two program of diamond drilling of 500 m is recommended to test the better mineralized vein structures at Josefina. The proposed holes should be spaced at about 50 metre intervals. The objective of this drilling program is to determine the attitude, thickness and grade of the better-mineralized parts of the Josefina veins. This Phase Two program is estimated to cost $ 90,000 U.S.

Additional diamond drilling may be required in Phase Two to test mineralized quartz vein structures in the Dos Naciones occurrence area in the southwest part of the property. The drilling here will be contingent on determining the attitude of the mineralized quartz-galena veins from detailed geological mapping of the proposed hand pits at this target area. A Phase Two program of diamond drilling of 300 m is recommended to test for the mineralized vein structures at Dos Naciones. The objective of this drilling program would be to determine the location and attitude of the previously-mined quartz-galena veins. The Phase Two diamond drilling in this area is estimated to cost $ 54,000 U.S.

If areas of igneous dykes or clay-altered or silica-altered rock are mapped within the area of the aeromagnetic low, then induced polarization (IP) surveying should be done to test for the presence of sulphide mineralization associated with the altered rocks. The IP surveying would be part of Phase Two exploration work on the Dos Naciones property, and is estimated to cost $ 30,000. Porphyry copper deposits are characterized by the presence of sulphide minerals as disseminated grains and as veinlets. Sufficiently abundant sulphides can be detected as chargeability anomalies by IP surveying. If the IP surveying indicates the presence of chargeability anomalies, then two or three diamond drill holes should be drilled to test for copper mineralization. These holes can be spaced 500 metres apart, and would be part of a Phase Three program on the property. The Phase Three program is estimated to cost $ 180,000 U.S.
Budget

Based on the exploration program recommended above, a staged budget for 2009 work on the Dos Naciones Project property is outlined as follows:

Phase One

Detailed geological mapping, stripping and trenching
- 1 Geologist for 50 days @ $300 per day: $15,000
- 3 Field Assistants for 50 days @ $100 per day: $15,000
- Food and accommodation @ $30 per man-day: $6,000
- Field supplies: $1,000
- Vehicle rental, fuel and maintenance: $5,000
- Analytical costs: 300 samples @ $30 per sample: $9,000
 - Total geological mapping, stripping and trenching: $51,000

Report preparation
- For reporting on all of the above work, including drafting: $2,500

Subtotal Phase One $53,500 U.S.

Phase Two

(contingent on the favourable results from Phase One work)

IP surveying in area of aeromagnetic low
- Say 15 days of surveying along cut grid lines with pickets at 25 m intervals (slope distance) at an all-inclusive cost $30,000

Diamond drilling to test mineralized vein structures at Josefina
- 500 metres at an all-inclusive (drilled, logged, split, sampled, water haul) cost of $180 per metre: $90,000

Diamond drilling to test mineralized vein structures at Dos Naciones
- 300 metres at an all-inclusive (drilled, logged, split, sampled, water haul) cost of $180 per metre: $54,000

Subtotal Phase Two $174,000 U.S.

Phase Three

(contingent on IP anomalies from Phase Two work being determined to be favourable for testing with diamond drill holes)

Diamond drilling in area of IP chargeability anomalies
- Say 1,000 metres at an all-inclusive (drilled, logged, split, sampled, water haul) cost of $180 per metre: $180,000

Subtotal Phase Three $180,000 U.S.

Contingency 10% $42,500 U.S.

TOTAL PHASE ONE, PHASE TWO AND PHASE THREE PROGRAMS: $450,000 U.S.
19.0 REFERENCES

Servicio Geologico Mexicano (1998) Santa Ana H12 – B82 total field aeromagnetic map; published by Servicio Geologico Mexicano, Secretaria de Economia; 1:50,000 scale.

Vidales Soto, T.G. (2008) Geologic and sampling map of Dos Nacionles project; unpublished map prepared for Yale Resources Ltd.
20.0 DATE

This report is hereby dated and made effective March 25th, 2009.
21.0 CERTIFICATE of AUTHOR

I, David J. Pawliuk, P.Geo. do hereby certify that:

1. I am currently employed as a consulting geologist by:
 Nanoose Geoservices
 2960 Anchor Way
 Nanoose Bay, British Columbia, Canada
 V9P 9G2

2. I graduated with a degree of Bachelor of Science with Specialization in Geology
 from the University of Alberta in 1975.

3. I am a member of the Association of Professional Engineers and Geoscientists of
 British Columbia, and of the Association of Professional Engineers, Geologists and
 Geophysicists of Alberta.

4. I have worked as a geologist for more than 20 years since my graduation from
 university.

5. I have read the definition of "qualified person" set out in National Instrument 43-101
 ("NI 43-101") and certify that by reason of my education, affiliation with a
 professional association (as defined in NI 43-101) and past relevant work
 experience, I fulfil the requirements to be a "qualified person" for the purposes of NI
 43-101.

6. I am responsible for the preparation of this Technical Report. I visited the Dos
 Naciones Project property on March 9, 2009, and performed a limited amount of
 geochemical rock sampling and geological mapping.

7. I have not had prior involvement with the property that is the subject of the

8. I am not aware of any material fact or material change with respect to the subject
 matter of the Technical Report that is not reflected in the Technical Report, the
 omission to disclose which makes the Technical Report misleading.

9. I am independent of the issuer applying all of the tests in section 1.5 of National

10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical
 Report has been prepared in compliance with that instrument and form.

11. I consent to the filing of the technical report with any stock exchange and other
 regulatory authority and any publication by them, including electronic publication in
 the company public files on their websites accessible by the public, of the Technical
 Report.

Dated this 25 Day of March, 2009.

[Signature]

Signature of Qualified Person

[Print name]

Print name of Qualified Person
APPENDIX A

LEGAL TITLE OPINION ON
DOS NACIONES MINERAL CONCESSION, SONORA, MEXICO
March 19, 2009

“CLIENT ATTORNEY PRIVILEDGE AND CONFIDENTIAL INFORMATION”

Ian Foreman
President
Yale Resources Ltd.
600 - 890 West Pender St.,
Vancouver, B.C., V6C 1K4

Re: TITLE OPINION

Dear Sirs:

As per instructions of Mr. Ezra Jimenez Vice President and CFO of that Company, this Firm issues a TITLE OPINION regarding the mining concession granted by the Mexican Government over the following property:

<table>
<thead>
<tr>
<th>CLAIM'S NAME</th>
<th>TITLE NUMBER</th>
<th>SURFACE (hectares)</th>
<th>LOCATION</th>
<th>PROPRIETOR</th>
<th>FILE No.</th>
<th>Effective Date from up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dos Naciones</td>
<td>230649</td>
<td>2,390,8269</td>
<td>Odopepe, Sonora and Cucurpe, Sonora</td>
<td>Minera Alta Vista, S.A. de C.V.</td>
<td>Book 366 Page 155 Act 309</td>
<td>From September 28, 2007 up to September 27, 2057</td>
</tr>
</tbody>
</table>

PRELIMINARY CONCLUSIONS

The above mentioned concession was reviewed and compared with the files contained in the Mexican Mining Public Registry, and all information contained in it, concurs with the registries issued by such Registry which copies can be delivered under request.

Cornejo · Méndez · González · Duarte Abogados
Minera Alta Vista, S.A. de C.V., is the holder of mining concessions’ rights before Mining Public Registry of Mexican Republic.
This opinion is issued by Cornejo, Méndez, González Duarte, S.C., as legal advisors authorized under Mexican Law to issue legal opinions related with any legal matter within Mexican Republic.

Alfonso González Uribe
Partner
APPENDIX B

ANALYTICAL CERTIFICATE
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>Ag</th>
<th>Al</th>
<th>As</th>
<th>B</th>
<th>Ba</th>
<th>Be</th>
<th>Bi</th>
<th>Ca</th>
<th>Cd</th>
<th>Co</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>E51556</td>
<td>0.187</td>
<td>>100</td>
<td>0.08</td>
<td>>10000</td>
<td><10</td>
<td>10</td>
<td><0.5</td>
<td>354</td>
<td>0.17</td>
<td>116.5</td>
<td>54</td>
<td>8</td>
</tr>
<tr>
<td>E51557</td>
<td>0.315</td>
<td>42.7</td>
<td>0.85</td>
<td>1630</td>
<td><10</td>
<td>10</td>
<td><0.5</td>
<td>2</td>
<td>6.26</td>
<td>3.6</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>E51558</td>
<td>0.287</td>
<td>7.3</td>
<td>1.22</td>
<td>212</td>
<td><10</td>
<td>10</td>
<td><0.5</td>
<td><2</td>
<td>9.21</td>
<td>3.4</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>E51559</td>
<td>0.044</td>
<td>22.3</td>
<td>0.18</td>
<td>122</td>
<td><10</td>
<td>30</td>
<td><0.5</td>
<td>18</td>
<td>0.21</td>
<td><0.5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>Fe</td>
<td>Ga</td>
<td>Hg</td>
<td>K</td>
<td>La</td>
<td>Mg</td>
<td>Mn</td>
<td>Mo</td>
<td>Na</td>
<td>Ni</td>
<td>P</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>ppm</td>
<td>74</td>
<td>7.79</td>
<td><10</td>
<td>1</td>
<td>0.08</td>
<td><10</td>
<td>0.01</td>
<td>195</td>
<td>5</td>
<td>0.02</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>ppm</td>
<td>9850</td>
<td>23.6</td>
<td>10</td>
<td><1</td>
<td>0.02</td>
<td><10</td>
<td>0.14</td>
<td>1645</td>
<td>38</td>
<td>0.02</td>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>ppm</td>
<td>7850</td>
<td>29.8</td>
<td>10</td>
<td><1</td>
<td>0.01</td>
<td><10</td>
<td>0.22</td>
<td>2210</td>
<td><1</td>
<td>0.02</td>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>ppm</td>
<td>435</td>
<td>2.58</td>
<td><10</td>
<td><1</td>
<td>0.11</td>
<td><10</td>
<td>0.02</td>
<td>173</td>
<td>6</td>
<td>0.02</td>
<td><1</td>
<td>550</td>
</tr>
<tr>
<td>S</td>
<td>Sb</td>
<td>Sc</td>
<td>Sr</td>
<td>Th</td>
<td>Ti</td>
<td>Tl</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>Zn</td>
<td>Ag</td>
<td>Pb</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>%</td>
<td>ppm</td>
</tr>
<tr>
<td>6.01</td>
<td>808</td>
<td><1</td>
<td>3</td>
<td><20</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td>5</td>
<td>90</td>
<td>6360</td>
<td>221</td>
<td>4.44</td>
</tr>
<tr>
<td>0.16</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td><20</td>
<td>0.04</td>
<td><10</td>
<td><10</td>
<td>27</td>
<td><10</td>
<td>607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td><2</td>
<td>2</td>
<td>24</td>
<td><20</td>
<td>0.02</td>
<td><10</td>
<td><10</td>
<td>13</td>
<td><10</td>
<td>317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>15</td>
<td><1</td>
<td>5</td>
<td><20</td>
<td><0.01</td>
<td><10</td>
<td><10</td>
<td>3</td>
<td><10</td>
<td>137</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

ROCK SAMPLE DESCRIPTIONS
## Sample number	Description
E51556 | Select sample from dump pile. GPS position 0542919E / 3337450N +/- 5 m (WGS 84 datum used for Dos Naciones sample sites). Select sample of better-mineralized, milky white quartz vein containing clots of subhedral galena up to 6 or 7 mm across. Material sampled from dump pile to south of Tajo #2 shaft. Shaft itself excavated to a depth of about 30 m in greyish pink granite. No vein material visible in walls of shaft at surface. Therefore attitude of the mineralized vein is not apparent. Vein possibly along granite/wallrock contact at depth here.

E51557 | GPS position 0542428E / 3337402N +/- 14 m. Continuous chip sample across 0.75 m width from same general location where historic sample 464307 plotted on sampling map provided by CanDev; however, no old sample marks remain at this site. I cleared-off 2 to 3 cm of weathered rock from outcrop surface before collecting sample. Skarn. Abundant iron oxide; about 1% combined disseminated malachite (mostly) and azurite. Traces epidote coating up to 60% of steep fracture surfaces; epidote coating only about 0.5 mm thick along fracture surfaces.

E51558 | GPS position 0543336E / 3337321N +/- 7 m. Continuous chip sample across 1.7 m between marks showing limits of historic sample 464324. Medium brown, fine grained, moderately fractured skarn. Irregular magnetite veinlets up to 7 cm wide form 3 to 4% rock volume. Limonite and malachite observed. No sulphide minerals seen but rock is intensely weathered. Note that historic sample 464324 noted as having a width of 2.0 m but my measurement (using folding ruler) of sample width is 1.7 m.

E51559 | GPS position 0544610E / 3338786N +/- 9 m. Continuous chip sample across 1.8 m, which is width of exposed vein. Quartz vein with traces light brown limonite along weathered fracture surfaces. No sulphides seen. Vein strike about 010 degrees dip 60 degrees to the east. Vein is emplaced along fault. There is a band 6 or 8 cm wide within central portion of vein that is banded on a mm scale; the vein quartz here is sugary, granular, sandy material versus solid quartz elsewhere. Quartz vein overall is banded on cm scale; there are at least 7 distinct bands with subhedral quartz crystals lining the sides of open spaces within the vein. Largest open cavity seen is about 10 cm by 25 cm by 8 cm in size. Josefina area.